Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 162
Filter
1.
Nat Commun ; 15(1): 3956, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38730277

ABSTRACT

Immunopeptidomics is crucial for immunotherapy and vaccine development. Because the generation of immunopeptides from their parent proteins does not adhere to clear-cut rules, rather than being able to use known digestion patterns, every possible protein subsequence within human leukocyte antigen (HLA) class-specific length restrictions needs to be considered during sequence database searching. This leads to an inflation of the search space and results in lower spectrum annotation rates. Peptide-spectrum match (PSM) rescoring is a powerful enhancement of standard searching that boosts the spectrum annotation performance. We analyze 302,105 unique synthesized non-tryptic peptides from the ProteomeTools project on a timsTOF-Pro to generate a ground-truth dataset containing 93,227 MS/MS spectra of 74,847 unique peptides, that is used to fine-tune the deep learning-based fragment ion intensity prediction model Prosit. We demonstrate up to 3-fold improvement in the identification of immunopeptides, as well as increased detection of immunopeptides from low input samples.


Subject(s)
Deep Learning , Peptides , Tandem Mass Spectrometry , Humans , Peptides/chemistry , Peptides/immunology , Tandem Mass Spectrometry/methods , Databases, Protein , Proteomics/methods , HLA Antigens/immunology , HLA Antigens/genetics , Software , Ions
2.
Commun Biol ; 7(1): 524, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38702419

ABSTRACT

A large proportion of HIV-coinfected visceral leishmaniasis (VL-HIV) patients exhibit chronic disease with frequent VL recurrence. However, knowledge on immunological determinants underlying the disease course is scarce. We longitudinally profiled the circulatory cellular immunity of an Ethiopian HIV cohort that included VL developers. We show that chronic VL-HIV patients exhibit high and persistent levels of TIGIT and PD-1 on CD8+/CD8- T cells, in addition to a lower frequency of IFN-γ+ TIGIT- CD8+/CD8- T cells, suggestive of impaired T cell functionality. At single T cell transcriptome and clonal resolution, the patients show CD4+ T cell anergy, characterised by a lack of T cell activation and lymphoproliferative response. These findings suggest that PD-1 and TIGIT play a pivotal role in VL-HIV chronicity, and may be further explored for patient risk stratification. Our findings provide a strong rationale for adjunctive immunotherapy for the treatment of chronic VL-HIV patients to break the recurrent disease cycle.


Subject(s)
Coinfection , HIV Infections , Leishmaniasis, Visceral , Humans , Leishmaniasis, Visceral/immunology , Leishmaniasis, Visceral/complications , Leishmaniasis, Visceral/parasitology , HIV Infections/immunology , HIV Infections/complications , Coinfection/immunology , Male , Adult , Female , CD8-Positive T-Lymphocytes/immunology , Middle Aged , Chronic Disease , CD4-Positive T-Lymphocytes/immunology , Ethiopia
3.
Cell Rep ; 43(4): 114062, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38588339

ABSTRACT

The role of T cell receptor (TCR) diversity in infectious disease susceptibility is not well understood. We use a systems immunology approach on three cohorts of herpes zoster (HZ) patients and controls to investigate whether TCR diversity against varicella-zoster virus (VZV) influences the risk of HZ. We show that CD4+ T cell TCR diversity against VZV glycoprotein E (gE) and immediate early 63 protein (IE63) after 1-week culture is more restricted in HZ patients. Single-cell RNA and TCR sequencing of VZV-specific T cells shows that T cell activation pathways are significantly decreased after stimulation with VZV peptides in convalescent HZ patients. TCR clustering indicates that TCRs from HZ patients co-cluster more often together than TCRs from controls. Collectively, our results suggest that not only lower VZV-specific TCR diversity but also reduced functional TCR affinity for VZV-specific proteins in HZ patients leads to lower T cell activation and consequently affects the susceptibility for viral reactivation.


Subject(s)
Herpes Zoster , Herpesvirus 3, Human , Lymphocyte Activation , Receptors, Antigen, T-Cell , Humans , Herpes Zoster/immunology , Herpes Zoster/virology , Receptors, Antigen, T-Cell/metabolism , Receptors, Antigen, T-Cell/immunology , Lymphocyte Activation/immunology , Herpesvirus 3, Human/immunology , Female , Middle Aged , Male , CD4-Positive T-Lymphocytes/immunology , Aged , Adult , Epitopes, T-Lymphocyte/immunology
4.
Methods Cell Biol ; 183: 115-142, 2024.
Article in English | MEDLINE | ID: mdl-38548409

ABSTRACT

The highly diverse T cell receptor (TCR) repertoire is a crucial component of the adaptive immune system that aids in the protection against a wide variety of pathogens. This TCR repertoire, comprising the collection of all TCRs in an individual, is a valuable source of information on both recent and ongoing T cell activation. Cancer cells, like pathogens, have the ability to trigger an adaptive immune response. However, because cancer cells use a variety of strategies to escape immune responses, this is often insufficient to completely eradicate them. As a result, immunotherapy is a promising treatment option for cancer patients. This treatment is expected to increase T cell activation and subsequently alter the TCR repertoire composition in these patients. Monitoring TCR repertoires before and after immunotherapy can therefore provide additional insight into T cell responses and might identify cancer-associated TCR sequences. Here we present a computational strategy to identify those changes in the TCR repertoire that occur after treatment with immunotherapy. Since this method allows the identification of TCR patterns that might be treatment-associated, it can help future research by revealing those patterns that are related with response. This TCR analysis workflow is illustrated using public data from three different cancer patients who received anti-PD-1 treatment.


Subject(s)
Receptors, Antigen, T-Cell , T-Lymphocytes , Humans , Receptors, Antigen, T-Cell/genetics , Immunotherapy/methods
5.
Methods Cell Biol ; 183: 143-160, 2024.
Article in English | MEDLINE | ID: mdl-38548410

ABSTRACT

Discovery of epitope-specific T-cell receptors (TCRs) for cancer therapies is a time consuming and expensive procedure that usually requires a large amount of patient cells. To maximize information from and minimize the need of precious samples in cancer research, prediction models have been developed to identify in silico epitope-specific TCRs. In this chapter, we provide a step-by-step protocol to train a prediction model using the user-friendly TCRex webtool for the nearly universal tumor-associated antigen Wilms' tumor 1 (WT1)-specific TCR repertoire. WT1 is a self-antigen overexpressed in numerous solid and hematological malignancies with a high clinical relevance. Training of computational models starts from a list of known epitope-specific TCRs which is often not available for new cancer epitopes. Therefore, we describe a workflow to assemble a training data set consisting of TCR sequences obtained from WT137-45-reactive CD8 T cell clones expanded and sorted from healthy donor peripheral blood mononuclear cells.


Subject(s)
Leukocytes, Mononuclear , Neoplasms , Humans , Epitopes , Receptors, Antigen, T-Cell/genetics , CD8-Positive T-Lymphocytes
6.
J Infect Dis ; 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38195164

ABSTRACT

The varicella-zoster virus (VZV) infects over 95% of the population. VZV reactivation causes herpes zoster (HZ), known as shingles, primarily affecting the elderly and immunocompromised individuals. However, HZ can also occur in otherwise healthy individuals. We analyzed the immune signature and risk profile in HZ patients using a genome-wide association study across different UK Biobank HZ cohorts. Additionally, we conducted one of the largest HZ HLA association studies to date, coupled with transcriptomic analysis of pathways underlying HZ susceptibility. Our findings highlight the significance of the MHC locus for HZ development, identifying five protective and four risk HLA alleles. This demonstrates that HZ susceptibility is largely governed by variations in the MHC. Furthermore, functional analyses revealed the upregulation of type I interferon and adaptive immune responses. These findings provide fresh molecular insights into the pathophysiology and the activation of innate and adaptive immune responses triggered by symptomatic VZV reactivation.

7.
mBio ; 15(1): e0196723, 2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38054750

ABSTRACT

IMPORTANCE: Malaria is caused by parasites of the genus Plasmodium, and reached a global disease burden of 247 million cases in 2021. To study drug resistance mutations and parasite population dynamics, whole-genome sequencing of patient blood samples is commonly performed. However, the predominance of human DNA in these samples imposes the need for time-consuming laboratory procedures to enrich Plasmodium DNA. We used the Oxford Nanopore Technologies' adaptive sampling feature to circumvent this problem and enrich Plasmodium reads directly during the sequencing run. We demonstrate that adaptive nanopore sequencing efficiently enriches Plasmodium reads, which simplifies and shortens the timeline from blood collection to parasite sequencing. In addition, we show that the obtained data can be used for monitoring genetic markers, or to generate nearly complete genomes. Finally, owing to its inherent mobility, this technology can be easily applied on-site in endemic areas where patients would benefit the most from genomic surveillance.


Subject(s)
Nanopores , Parasites , Plasmodium , Animals , Humans , Parasites/genetics , Plasmodium/genetics , Whole Genome Sequencing/methods , DNA, Protozoan/genetics , Plasmodium falciparum/genetics
8.
J Pediatr ; 266: 113869, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38065281

ABSTRACT

OBJECTIVE: To develop an artificial intelligence-based software system for predicting late-onset sepsis (LOS) and necrotizing enterocolitis (NEC) in infants admitted to the neonatal intensive care unit (NICU). STUDY DESIGN: Single-center, retrospective cohort study, conducted in the NICU of the Antwerp University Hospital. Continuous monitoring data of 865 preterm infants born at <32 weeks gestational age, admitted to the NICU in the first week of life, were used to train an XGBoost machine learning (ML) algorithm for LOS and NEC prediction in a cross-validated setup. Afterward, the model's performance was assessed on an independent test set of 148 patients (internal validation). RESULTS: The ML model delivered hourly risk predictions with an overall sensitivity of 69% (142/206) for all LOS/NEC episodes and 81% (67/83) for severe LOS/NEC episodes. The model showed a median time gain of ≤10 hours (IQR, 3.1-21.0 hours), compared with historical clinical diagnosis. On the complete retrospective dataset, the ML model made 721 069 predictions, of which 9805 (1.3%) depicted a LOS/NEC probability of ≥0.15, resulting in a total alarm rate of <1 patient alarm-day per week. The model reached a similar performance on the internal validation set. CONCLUSIONS: Artificial intelligence technology can assist clinicians in the early detection of LOS and NEC in the NICU, which potentially can result in clinical and socioeconomic benefits. Additional studies are required to quantify further the effect of combining artificial and human intelligence on patient outcomes in the NICU.


Subject(s)
Decision Support Systems, Clinical , Enterocolitis, Necrotizing , Fetal Diseases , Infant, Newborn, Diseases , Sepsis , Infant , Female , Infant, Newborn , Humans , Enterocolitis, Necrotizing/diagnosis , Artificial Intelligence , Infant, Premature , Retrospective Studies , Machine Learning , Sepsis/diagnosis , Intensive Care Units, Neonatal
9.
J Infect Dis ; 229(2): 507-516, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-37787611

ABSTRACT

T-cell-based diagnostic tools identify pathogen exposure but lack differentiation between recent and historical exposures in acute infectious diseases. Here, T-cell receptor (TCR) RNA sequencing was performed on HLA-DR+/CD38+CD8+ T-cell subsets of hospitalized coronavirus disease 2019 (COVID-19) patients (n = 30) and healthy controls (n = 30; 10 of whom had previously been exposed to severe acute respiratory syndrome coronavirus 2 [SARS-CoV-2]). CDR3α and CDR3ß TCR regions were clustered separately before epitope specificity annotation using a database of SARS-CoV-2-associated CDR3α and CDR3ß sequences corresponding to >1000 SARS-CoV-2 epitopes. The depth of the SARS-CoV-2-associated CDR3α/ß sequences differentiated COVID-19 patients from the healthy controls with a receiver operating characteristic area under the curve of 0.84 ± 0.10. Hence, annotating TCR sequences of activated CD8+ T cells can be used to diagnose an acute viral infection and discriminate it from historical exposure. In essence, this work presents a new paradigm for applying the T-cell repertoire to accomplish TCR-based diagnostics.


Subject(s)
CD8-Positive T-Lymphocytes , COVID-19 , Humans , Receptors, Antigen, T-Cell/genetics , COVID-19/diagnosis , SARS-CoV-2 , T-Lymphocyte Subsets , Epitopes , Epitopes, T-Lymphocyte , COVID-19 Testing
10.
Proteomics ; 24(8): e2300336, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38009585

ABSTRACT

Immunopeptidomics is a key technology in the discovery of targets for immunotherapy and vaccine development. However, identifying immunopeptides remains challenging due to their non-tryptic nature, which results in distinct spectral characteristics. Moreover, the absence of strict digestion rules leads to extensive search spaces, further amplified by the incorporation of somatic mutations, pathogen genomes, unannotated open reading frames, and post-translational modifications. This inflation in search space leads to an increase in random high-scoring matches, resulting in fewer identifications at a given false discovery rate. Peptide-spectrum match rescoring has emerged as a machine learning-based solution to address challenges in mass spectrometry-based immunopeptidomics data analysis. It involves post-processing unfiltered spectrum annotations to better distinguish between correct and incorrect peptide-spectrum matches. Recently, features based on predicted peptidoform properties, including fragment ion intensities, retention time, and collisional cross section, have been used to improve the accuracy and sensitivity of immunopeptide identification. In this review, we describe the diverse bioinformatics pipelines that are currently available for peptide-spectrum match rescoring and discuss how they can be used for the analysis of immunopeptidomics data. Finally, we provide insights into current and future machine learning solutions to boost immunopeptide identification.


Subject(s)
Peptides , Proteomics , Proteomics/methods , Peptides/chemistry , Mass Spectrometry/methods , Machine Learning , Protein Processing, Post-Translational
11.
J Chem Inf Model ; 64(7): 2515-2527, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-37870574

ABSTRACT

In the field of drug discovery, there is a substantial challenge in seeking out chemical structures that possess desirable pharmacological, toxicological, and pharmacokinetic properties. Complications arise when drugs interfere with the functioning of cardiac ion channels, leading to serious cardiovascular consequences. The discontinuation and removal of numerous approved drugs from the market or at late development stages in the pipeline due to such inhibitory effects further highlight the urgency of addressing this issue. Consequently, the early prediction of potential blockers targeting cardiac ion channels during the drug discovery process is of paramount importance. This study introduces a deep learning framework that computationally determines the cardiotoxicity associated with the voltage-gated potassium channel (hERG), the voltage-gated calcium channel (Cav1.2), and the voltage-gated sodium channel (Nav1.5) for drug candidates. The predictive capabilities of three feature representations─molecular fingerprints, descriptors, and graph-based numerical representations─are rigorously benchmarked. Additionally, a novel training and evaluation data set framework is presented, enabling predictive model training of drug off-target cardiotoxicity using a comprehensive and large curated data set covering these three cardiac ion channels. To facilitate these predictions, a robust and comprehensive small molecule cardiotoxicity prediction tool named CToxPred has been developed. It is made available as open source under the permissive MIT license at https://github.com/issararab/CToxPred.


Subject(s)
Cardiotoxicity , Ether-A-Go-Go Potassium Channels , Humans , Benchmarking , Ion Channels , Drug Discovery , Potassium Channel Blockers/pharmacology , Potassium Channel Blockers/chemistry
12.
J Hazard Mater ; 464: 132956, 2024 02 15.
Article in English | MEDLINE | ID: mdl-37976853

ABSTRACT

Global soil acidification is increasing, enlarging aluminum (Al) availability in soils, leading to reductions in plant growth. This study investigates the effect of Al stress on the leaf growth zones of Rye (Secale cereale, cv Beira). Kinematic analysis showed that the effect of Al on leaf growth rates was mainly due to a reduced cell production rate in the meristem. Transcriptomic analysis identified 2272 significantly (log2fold > |0.5| FDR < 0.05) differentially expressed genes (DEGs) for Al stress. There was a downregulation in several DEGs associated with photosynthetic processes and an upregulation in genes for heat/light response, and H2O2 production in all leaf zones. DEGs associated with heavy metals and malate transport were increased, particularly, in the meristem. To determine the putative function of these processes in Al tolerance, we performed biochemical analyses comparing the tolerant Beira with an Al sensitive variant RioDeva. Beira showed improved sugar metabolism and redox homeostasis, specifically in the meristem compared to RioDeva. Similarly, a significant increase in malate and citrate production, which are known to aid in Al detoxification in plants, was found in Beira. This suggests that Al tolerance in Rye is linked to its ability for Al exclusion from the leaf meristem.


Subject(s)
Aluminum , Secale , Secale/genetics , Secale/metabolism , Aluminum/toxicity , Malates/metabolism , Malates/pharmacology , Hydrogen Peroxide/metabolism , Oxidation-Reduction , Plant Leaves/metabolism , Sugars
13.
BMC Genomics ; 24(1): 606, 2023 Oct 11.
Article in English | MEDLINE | ID: mdl-37821878

ABSTRACT

BACKGROUND: Plasmodium vivax is the second most important cause of human malaria worldwide, and accounts for the majority of malaria cases in South America. A high-quality reference genome exists for Papua Indonesia (PvP01) and Thailand (PvW1), but is lacking for South America. A reference genome specifically for South America would be beneficial though, as P. vivax is a genetically diverse parasite with geographical clustering. RESULTS: This study presents a new high-quality assembly of a South American P. vivax isolate, referred to as PvPAM (P. vivax Peruvian AMazon). The genome was obtained from a low input patient sample from the Peruvian Amazon and sequenced using PacBio technology, resulting in a highly complete assembly with 6497 functional genes. Telomeric ends were present in 17 out of 28 chromosomal ends, and additional (sub)telomeric regions are present in 12 unassigned contigs. A comparison of multigene families between PvPAM and the PvP01 genome revealed remarkable variation in vir genes, and the presence of merozoite surface proteins (MSP) 3.6 and 3.7. Three dhfr and dhps drug resistance associated mutations are present in PvPAM, similar to those found in other Peruvian isolates. Mapping of publicly available South American whole genome sequencing (WGS) data to PvPAM resulted in significantly fewer variants and truncated reads compared to the use of PvP01 or PvW1 as reference genomes. To minimize the number of core genome variants in non-South American samples, PvW1 is most suited for Southeast Asian isolates, both PvPAM and PvW1 are suited for South Asian isolates, and PvPAM is recommended for African isolates. Interestingly, non-South American samples still contained the least subtelomeric variants when mapped to PvPAM, indicating high quality of the PvPAM subtelomeric regions. CONCLUSIONS: Our findings show that the PvPAM reference genome more accurately represents South American P. vivax isolates in comparison to PvP01 and PvW1. In addition, PvPAM has a high level of completeness, and contains a similar number of annotated genes as PvP01 or PvW1. The PvPAM genome therefore will be a valuable resource to improve future genomic analyses on P. vivax isolates from the South American continent.


Subject(s)
Malaria, Vivax , Malaria , Humans , Plasmodium vivax/genetics , Malaria/parasitology , South America , Whole Genome Sequencing , Mutation , Malaria, Vivax/parasitology , Protozoan Proteins/genetics
14.
Vaccines (Basel) ; 11(7)2023 Jul 13.
Article in English | MEDLINE | ID: mdl-37515051

ABSTRACT

The immune system acts as an intricate apparatus that is dedicated to mounting a defense and ensures host survival from microbial threats. To engage this faceted immune response and provide protection against infectious diseases, vaccinations are a critical tool to be developed. However, vaccine responses are governed by levels that, when interrogated, separately only explain a fraction of the immune reaction. To address this knowledge gap, we conducted a feasibility study to determine if multi-view modeling could aid in gaining actionable insights on response markers shared across populations, capture the immune system's diversity, and disentangle confounders. We thus sought to assess this multi-view modeling capacity on the responsiveness to the Hepatitis B virus (HBV) vaccination. Seroconversion to vaccine-induced antibodies against the HBV surface antigen (anti-HBs) in early converters (n = 21; <2 months) and late converters (n = 9; <6 months) and was defined based on the anti-HBs titers (>10IU/L). The multi-view data encompassed bulk RNA-seq, CD4+ T-cell parameters (including T-cell receptor data), flow cytometry data, and clinical metadata (including age and gender). The modeling included testing single-view and multi-view joint dimensionality reductions. Multi-view joint dimensionality reduction outperformed single-view methods in terms of the area under the curve and balanced accuracy, confirming the increase in predictive power to be gained. The interpretation of these findings showed that age, gender, inflammation-related gene sets, and pre-existing vaccine-specific T-cells could be associated with vaccination responsiveness. This multi-view dimensionality reduction approach complements clinical seroconversion and all single modalities. Importantly, this modeling could identify what features could predict HBV vaccine response. This methodology could be extended to other vaccination trials to identify the key features regulating responsiveness.

15.
Front Immunol ; 14: 1177245, 2023.
Article in English | MEDLINE | ID: mdl-37287975

ABSTRACT

With Varicella-Zoster Virus (VZV) being an exclusive human pathogen, human induced pluripotent stem cell (hiPSC)-derived neural cell culture models are an emerging tool to investigate VZV neuro-immune interactions. Using a compartmentalized hiPSC-derived neuronal model allowing axonal VZV infection, we previously demonstrated that paracrine interferon (IFN)-α2 signalling is required to activate a broad spectrum of interferon-stimulated genes able to counteract a productive VZV infection in hiPSC-neurons. In this new study, we now investigated whether innate immune signalling by VZV-challenged macrophages was able to orchestrate an antiviral immune response in VZV-infected hiPSC-neurons. In order to establish an isogenic hiPSC-neuron/hiPSC-macrophage co-culture model, hiPSC-macrophages were generated and characterised for phenotype, gene expression, cytokine production and phagocytic capacity. Even though immunological competence of hiPSC-macrophages was shown following stimulation with the poly(dA:dT) or treatment with IFN-α2, hiPSC-macrophages in co-culture with VZV-infected hiPSC-neurons were unable to mount an antiviral immune response capable of suppressing a productive neuronal VZV infection. Subsequently, a comprehensive RNA-Seq analysis confirmed the lack of strong immune responsiveness by hiPSC-neurons and hiPSC-macrophages upon, respectively, VZV infection or challenge. This may suggest the need of other cell types, like T-cells or other innate immune cells, to (co-)orchestrate an efficient antiviral immune response against VZV-infected neurons.


Subject(s)
Chickenpox , Herpes Zoster , Induced Pluripotent Stem Cells , Varicella Zoster Virus Infection , Humans , Herpesvirus 3, Human , Coculture Techniques , Virus Replication/physiology , Neurons , Macrophages , Interferons , Antiviral Agents , Immunity, Innate
16.
Nat Commun ; 14(1): 3517, 2023 06 14.
Article in English | MEDLINE | ID: mdl-37316492

ABSTRACT

Antimicrobial resistant Salmonella enterica serovar Concord (S. Concord) is known to cause severe gastrointestinal and bloodstream infections in patients from Ethiopia and Ethiopian adoptees, and occasional records exist of S. Concord linked to other countries. The evolution and geographical distribution of S. Concord remained unclear. Here, we provide a genomic overview of the population structure and antimicrobial resistance (AMR) of S. Concord by analysing genomes from 284 historical and contemporary isolates obtained between 1944 and 2022 across the globe. We demonstrate that S. Concord is a polyphyletic serovar distributed among three Salmonella super-lineages. Super-lineage A is composed of eight S. Concord lineages, of which four are associated with multiple countries and low levels of AMR. Other lineages are restricted to Ethiopia and horizontally acquired resistance to most antimicrobials used for treating invasive Salmonella infections in low- and middle-income countries. By reconstructing complete genomes for 10 representative strains, we demonstrate the presence of AMR markers integrated in structurally diverse IncHI2 and IncA/C2 plasmids, and/or the chromosome. Molecular surveillance of pathogens such as S. Concord supports the understanding of AMR and the multi-sector response to the global AMR threat. This study provides a comprehensive baseline data set essential for future molecular surveillance.


Subject(s)
Anti-Bacterial Agents , Drug Resistance, Bacterial , Humans , Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial/genetics , Ethiopia/epidemiology , Genomics , Salmonella/genetics
17.
Front Immunol ; 14: 1130876, 2023.
Article in English | MEDLINE | ID: mdl-37325653

ABSTRACT

Despite the general agreement on the significance of T cells during SARS-CoV-2 infection, the clinical impact of specific and cross-reactive T-cell responses remains uncertain. Understanding this aspect could provide insights for adjusting vaccines and maintaining robust long-term protection against continuously emerging variants. To characterize CD8+ T-cell response to SARS-CoV-2 epitopes unique to the virus (SC2-unique) or shared with other coronaviruses (CoV-common), we trained a large number of T-cell receptor (TCR) - epitope recognition models for MHC-I-presented SARS-CoV-2 epitopes from publicly available data. These models were then applied to longitudinal CD8+ TCR repertoires from critical and non-critical COVID-19 patients. In spite of comparable initial CoV-common TCR repertoire depth and CD8+ T-cell depletion, the temporal dynamics of SC2-unique TCRs differed depending on the disease severity. Specifically, while non-critical patients demonstrated a large and diverse SC2-unique TCR repertoire by the second week of the disease, critical patients did not. Furthermore, only non-critical patients exhibited redundancy in the CD8+ T-cell response to both groups of epitopes, SC2-unique and CoV-common. These findings indicate a valuable contribution of the SC2-unique CD8+ TCR repertoires. Therefore, a combination of specific and cross-reactive CD8+ T-cell responses may offer a stronger clinical advantage. Besides tracking the specific and cross-reactive SARS-CoV-2 CD8+ T cells in any TCR repertoire, our analytical framework can be expanded to more epitopes and assist in the assessment and monitoring of CD8+ T-cell response to other infections.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Epitopes, T-Lymphocyte , Receptors, Antigen, T-Cell , CD8-Positive T-Lymphocytes
18.
Cells ; 12(9)2023 04 23.
Article in English | MEDLINE | ID: mdl-37174625

ABSTRACT

Overexpression of the transmembrane mucin MUC13, as seen in inflammatory bowel diseases (IBD), could potentially impact barrier function. This study aimed to explore how inflammation-induced MUC13 disrupts epithelial barrier integrity by affecting junctional protein expression in IBD, thereby also considering the involvement of MUC1. RNA sequencing and permeability assays were performed using LS513 cells transfected with MUC1 and MUC13 siRNA and subsequently stimulated with IL-22. In vivo intestinal permeability and MUC13-related signaling pathways affecting barrier function were investigated in acute and chronic DSS-induced colitis wildtype and Muc13-/- mice. Finally, the expression of MUC13, its regulators and other barrier mediators were studied in IBD and control patients. Mucin knockdown in intestinal epithelial cells affected gene expression of several barrier mediators in the presence/absence of inflammation. IL-22-induced MUC13 expression impacted barrier function by modulating the JAK1/STAT3, SNAI1/ZEB1 and ROCK2/MAPK signaling pathways, with a cooperating role for MUC1. In response to DSS, MUC13 was protective during the acute phase whereas it caused more harm upon chronic colitis. The pathways accounting for the MUC13-mediated barrier dysfunction were also altered upon inflammation in IBD patients. These novel findings indicate an active role for aberrant MUC13 signaling inducing intestinal barrier dysfunction upon inflammation with MUC1 as collaborating partner.


Subject(s)
Colitis , Inflammatory Bowel Diseases , Mucins , Animals , Mice , Colitis/chemically induced , Colitis/metabolism , Inflammation/metabolism , Inflammatory Bowel Diseases/metabolism , Intestinal Mucosa/metabolism , Mucins/metabolism , rho-Associated Kinases/metabolism , Interleukin-22
19.
Methods Mol Biol ; 2673: 33-51, 2023.
Article in English | MEDLINE | ID: mdl-37258905

ABSTRACT

Immunological protection against a wide variety of pathogens is largely mediated by the diverse and dynamic T cell receptor (TCR) repertoire, a crucial component of the adaptive immune system. An encounter with infectious agents stimulates specific T cells to initiate a direct immune response to combat intruders. Hence, the TCR repertoire may conceal crucial information regarding current and past infections and might assist in the development and monitoring of vaccines. To unlock its knowledge, we describe a computational workflow involving both supervised and unsupervised machine learning techniques to analyze and annotate full TCR repertoire data. The method is explained using data from a published yellow fever virus (YFV) vaccination study in healthy individuals. The TCR repertoire of one individual is studied before and 2 weeks after vaccination, using an efficient clustering method and identification of YFV-specific TCRs.


Subject(s)
Receptors, Antigen, T-Cell , T-Lymphocytes , Humans , Cluster Analysis , Vaccination
20.
Anal Chem ; 95(22): 8433-8442, 2023 06 06.
Article in English | MEDLINE | ID: mdl-37218737

ABSTRACT

Small molecule structure elucidation using tandem mass spectrometry (MS/MS) plays a crucial role in life science, bioanalytical, and pharmaceutical research. There is a pressing need for increased throughput of compound identification and transformation of historical data into information-rich spectral databases. Meanwhile, molecular networking, a recent bioinformatic framework, provides global displays and system-level understanding of complex LC-MS/MS data sets. Herein we present meRgeION, a multifunctional, modular, and flexible R-based toolbox to streamline spectral database building, automated structural elucidation, and molecular networking. The toolbox offers diverse tuning parameters and the possibility to combine various algorithms in the same pipeline. As an open-source R package, meRgeION is ideally suited for building spectral databases and molecular networks from privacy-sensitive and preliminary data. Using meRgeION, we have created an integrated spectral database covering diverse pharmaceutical compounds that was successfully applied to annotate drug-related metabolites from a published nontargeted metabolomics data set as well as reveal the chemical space behind this complex data set through molecular networking. Moreover, the meRgeION-based processing workflow has demonstrated the usefulness of a spectral library search and molecular networking for pharmaceutical forced degradation studies. meRgeION is freely available at: https://github.com/daniellyz/meRgeION2.


Subject(s)
Algorithms , Tandem Mass Spectrometry , Chromatography, Liquid/methods , Metabolomics/methods , Pharmaceutical Preparations , Software
SELECTION OF CITATIONS
SEARCH DETAIL
...